Abstract:

Hallucination has been widely recognized to be a significant drawback for large language models (LLMs). There have been many works that attempt to reduce the extent of hallucination. These efforts have mostly been empirical so far, which cannot answer the fundamental question whether it can be completely eliminated. In this paper, we formalize the problem and show that it is impossible to eliminate hallucination in LLMs. Specifically, we define a formal world where hallucina- tion is defined as inconsistencies between a computable LLM and a computable ground truth function. By employing results from learning theory, we show that LLMs cannot learn all of the computable functions and will therefore always hal- lucinate. Since the formal world is a part of the real world which is much more complicated, hallucinations are also inevitable for real world LLMs. Furthermore, for real world LLMs constrained by provable time complexity, we describe the hallucination-prone tasks and empirically validate our claims. Finally, using the formal world framework, we discuss the possible mechanisms and efficacies of existing hallucination mitigators as well as the practical implications on the safe deployment of LLMs.

  • zygo_histo_morpheus@programming.dev
    link
    fedilink
    arrow-up
    0
    ·
    9 months ago

    The problem isn’t just that llms can’t say “I don’t know”, it’s also that they don’t know if they know something or not. Confidence intervals can help prevent some low-hanging fruit hallucinations but you can’t eliminate hallucinations entirely since they will also hallucinate about how correct they are about a given topic.