A new generation of engineers has realized they can push heat pumps to the limit.

  • spidermanchild@sh.itjust.works
    link
    fedilink
    arrow-up
    19
    arrow-down
    1
    ·
    3 months ago

    “New generation of engineers” is a bit cringe. The old generation knew thermodynamics pretty damn well. All that’s changed is they’re using R290 refrigerants and variable speed compressors now, but those don’t change anything from a physics perspective. COP is fun but it’s not even the right metric to use from a policy perspective, just like MPG. And despite being unitless, COP suffers from the same exagerative effect as MPG numbers. What matters is the carbon associated with delivering BTUs to a home, so here you can have the ridiculous case of delivering more BTUs at a higher carbon cost achieving a higher SCOP than the same exact heat pump delivering fewer BTUs at a lower total carbon cost achieving a lower SCOP for a better insulated home, and the person with the higher SCOP bragging about it like a clown. At least when the government tests COP it’s a standardized test so you can actually compared equipment (somewhat).

    Regardless, nerds gonna nerd and no harm done (and I also track real time energy use of my heat pump, so I consider myself a nerd).

    • chunkystyles@sopuli.xyz
      link
      fedilink
      English
      arrow-up
      4
      ·
      3 months ago

      What really matters is the wattage needed to cool the space. That’s really it. The less energy used, the less the strain on the grid, or the less solar capacity needed.

      • spidermanchild@sh.itjust.works
        link
        fedilink
        arrow-up
        3
        arrow-down
        1
        ·
        3 months ago

        Wattage is power, not energy. But I still generally prefer carbon as a metric because that’s the climate issue, so by focusing on it directly we can make more informed decisions. It also incorporates time of day/seasonal (peak) impacts implicitly, which also have profound effects on the grid, more than total energy used. The essence of our comments is the same though.

    • spidermanchild@sh.itjust.works
      link
      fedilink
      arrow-up
      9
      ·
      3 months ago

      Not sure where you’re located, but there are often significant incentives for heat pumps. If you’re US and low/moderate income, there are big programs ramping up via the IRA that will cover a large percentage of the costs, assuming you’re not in a total brain dead state.

  • evranch@lemmy.ca
    link
    fedilink
    arrow-up
    5
    ·
    3 months ago

    I saw 5 for air-air and was impressed. Then I see SCOP? Oh please. Why not change the scale again to make sure nobody knows what a good value is. Just like SEER on an air conditioner.

    SCOP varies depending on environmental conditions!

    Real COP or go home IMO. Watts out/watts in, no fudging numbers to confuse consumers again.

  • cordlesslamp@lemmy.today
    link
    fedilink
    arrow-up
    4
    arrow-down
    3
    ·
    3 months ago

    I’m just surprised there’s no “AI heat pumps” yet.

    Now that’s something the world is really needed. (/s)

    • skuzz@discuss.tchncs.de
      link
      fedilink
      arrow-up
      2
      ·
      edit-2
      3 months ago

      https://www.sciencedirect.com/science/article/pii/S2352484722012021

      AI is the new rule 34.

      Artificial intelligence (AI) models for refrigeration, heat pumps, and air conditioners have emerged in recent decades. The universal approximation accuracy and prediction performances of various AI structures like feedforward neural networks, radial basis function neural networks, adaptive neuro-fuzzy inference and recurrent neural networks are encouraging interest. … Thus, complex multi-objective problems that require high precision solutions to optimize the cost and performance of ideal RHVAC are solved using artificial intelligence techniques (Mohanraj et al., 2012).

      Granted, this is modeling, not implementation, but.